Comparative Analysis Scoring System Auto Essay (simple-o) Based Algoritma Generalized Latent Semantic Analysis (GLSA) Laplacian Eigenmaps Embedding (LEM) and Hybrid Indexing

Authors

DOI:

https://doi.org/10.69616/mit.v1i2.190

Keywords:

GLSA, Hybrid indexing, LEM, Pseudocode, Simple-O

Abstract

This research discusses a comparison of two algorithms for an automatic essay assessment system (Simple-O), namely generalized latent semantic analysis (GLSA), Laplacian Eigenmaps embedding (LEM) and hybrid indexing. The two algorithms are compared to find out how the two algorithms work, processing speed, and assessment results. Comparison of how it works is done by comparing the pseudocode of each algorithm. The processing speed is calculated to find out a faster algorithm for assessing essays. The GLSA hybrid indexing algorithm is a development of the LEM algorithm. The fundamental difference between the two algorithms is in the treatment of nouns and words other than nouns. This research used a sample of eight questions completed by 48 students (384 data). From the research results, GLSA LEM has a total processing time of 46.51454 seconds, which is faster than GLSA hybrid indexing. Meanwhile, the average processing time for GLSA LEM and GLSA hybrid indexing to assess one answer is 6-6.6 seconds. The assessment results from GLSA LEM and GLSA hybrid indexing have the highest similarity level of 95.83% and the lowest 16.67%. Of the eight questions tested, five of them had a similarity level of more than 83.33%.

Author Biographies

Dandun Kusuma Yudha, Universitas Indonesia

Departemen Teknik Elektro

Anak Agung Putri Ratna, Universitas Indonesia

Departemen Teknik Elektro

References

J. Burstein. 2003. The e-rater scoring engine: Automated essay scoring with natural language processing. In M. D. Shermis and J. Burstein, editors, Automated essay scoring: A cross-disciplinary perspective. Lawrence Erlbaum Associates, Hillsdale, NJ.

E. B. Page. 1966. The imminence of grading essays by computer. Phi Delta Kappan, 47:238–243.

M. Rudner, Lawrence & Liang, Tahung. 2002. Automated Essay Scoring Using Bayes’ Theorem. The Journal of Technology, Learning, and Assessment, volume 1, number 2.

Artajaya, Henry. (2012). ?Analis Algoritma pada Sistem Essay Grading SIMPLE-O?. Skripsi. Depok: Universitas Indonesia.

Abdy, T.M. Rikza. (2013). ?Analisa Kinerja Algoritma Generalized Latent Semantic Analysis (GLSA) Dengan Proses Stemming Menggunakan Persamaan Kata Pada Sistem Penilaian Otomatis Simple-O. Skripsi. Depok: Universitas Indonesia.

Ratna, A. A. P., Budiardjo, B., Hartanto. D. (2007); SIMPLE: Sistem Penilai Esei Otomatis untuk Menilai Ujian dalam Bahasa Indonesia; Makara, Teknologi, Vol. 11, No. 1,

Artajaya, Henry. (2013). Analisa Unjuk Sistem Penilai Esai Otomatis Berbasis Algoritma Generalized Semantic Analysis (GLSA) Menggunakan Metode Spektral Laplacian Eigenmaps Embedding. Tesis. Depok: Universitas Indonesia.

P. W. Foltz, D. Laham, and T. K. Landauer. 1999. Automated Essay Scoring: Applications to Educational Technology. In Proc. of World Conf. Educational Multimedia, Hypermedia & Telecommunications, Seattle, USA.

Christie, J. R., 1999, Automated essay marking-for both style and content. Proceedings of the Third Annual Computer Assisted Assessment Conference, Loughborough University, Loughborough, UK.

Ming, P.Y., Mikhailov, A.A., and Kuan, T.L., 2000, Intelligent essay marking system. Learners Together, NgccANN Polytechnic, Singapore.

Mitchell, T., Russel, T., Broomhead, P., and Aldridge N. 2002. Towards robust computerized marking of free-text responses. Proceedings of the Sixth International Computer Assisted Assessment Conference, Loughborough University, Loughborough, UK,

I. Matveeva, ?Generalized latent semantic analysis for document representation,? ProQuest Dissertations and,Theses. Chicago: Proquest LLC, 2008.

Olney, Andrew M. ?Generalizing Latent Semantic Analysis?. 2009 IEEE International Conference on Semantic Computing.University of Memphis. Memphis, USA.

D. Widdows, ?Unsupervised methods for developing taxonomies by combining syntactic and statistical information,? North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2003.

E. L. Terra and C. L. Clarke, ?Frequency estimates for statistical word similarity measures,? North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2003.

T. F. Cox and M. A. Coxx, Multidimensional Scaling, CRC/Chapman and Hall, 2001.

M. Belkin and P. Niyogi, ?Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, vol. 15, no. 6, pp. 1373-1396, 2003.

C. Manning and H. Schutze, Foundations of Statistical Natural Language Processing, Cambridge, MA: MIT Press, 1999.

F. Choi, P. Wiemer-Hastings, and J. Moore, ?Latent semantic analysis for text segmentation,? in Proc. Of Empirical Methods on Natural Language Processing, pp. 109-117, 2001.

Database Kata Dasar Bahasa Indonesia. 2010. http://www.bahtera.org 8 Oktober 2013

Published

2024-10-31

How to Cite

Yudha, D. K., & Ratna, A. A. P. (2024). Comparative Analysis Scoring System Auto Essay (simple-o) Based Algoritma Generalized Latent Semantic Analysis (GLSA) Laplacian Eigenmaps Embedding (LEM) and Hybrid Indexing. Jurnal Media Informasi Teknologi, 1(2), 83-94. https://doi.org/10.69616/mit.v1i2.190