Mask Detection Using the YOLO (You Only Look Once) Method
DOI:
https://doi.org/10.69616/mit.v1i1.165Keywords:
computer vision, CNN, mask detection, YOLOAbstract
The COVID-19 pandemic has emphasized the importance of wearing masks as a preventive measure. To facilitate mask detection and ensure compliance, computer vision techniques have been widely utilized. This research aims to develop a mask detection system using the YOLO (You Only Look Once) method. YOLO is a real-time object detection method that provides accurate and efficient results. The proposed system utilizes a pre-trained YOLO model trained on a dataset comprising images of individuals with and without masks. The YOLO model can detect and locate faces, as well as differentiate between individuals wearing masks and those who are not. The method works by dividing the image into a grid and predicting bounding boxes and class probabilities for each grid cell. This approach enables real-time mask detection with minimal computational overhead. Experimental evaluations were conducted using various relevant benchmark datasets. The evaluation results demonstrate that the mask detection system using the YOLO method achieves high detection rates and fast response times. This research is expected to contribute to the effort of monitoring mask usage to control the spread of COVID-19.
References
Y. Theopilus, T. Yogasara, C. Theresia, and J. R. Octavia, “Analisis risiko produk alat pelindung diri (apd) pencegah penularan covid-19 untuk pekerja informal di indonesia,” J. Rekayasa Sist. Ind., vol. 9, no. 2, pp. 115–134, 2020.
M. J. Shafiee, B. Chywl, F. Li, and A. Wong, “Fast YOLO: A fast you only look once system for real-time embedded object detection in video,” arXiv Prepr. arXiv1709.05943, 2017.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
S. Sumijan and P. A. W. Purnama, “Teori dan Aplikasi Pengolahan Citra Digital Penerapan dalam Bidang Citra Medis.” PENERBIT INSAN CENDEKIA MANDIRI, 2021.
F. Marpaung, F. Aulia, and R. C. Nabila, “COMPUTER VISION DAN PENGOLAHAN CITRA DIGITAL.” PUSTAKA AKSARA, 2022.
F. Fandiansyah, J. Y. Sari, and I. P. Ningrum, “Pengenalan Wajah Menggunakan Metode Linear Discriminant Analysis dan k Nearest Neighbor,” Ultimatics, vol. 9, no. 1, pp. 1–9, Jun. 2017.
A. Setiyorini, I. P. N. Purnama, J. Y. Sari, M. Muchtar, and E. Ngii, “Vehicle number plate identification using template matching algorithm for automatic parking system,” in ACM International Conference Proceeding Series, 2019. doi: 10.1145/3330482.3330483.
Y. P. Pasrun, M. Muchtar, and A. N. Basyarah, “Indonesian License Plate Detection Using Morphological Operation,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 797, no. 1, p. 12037.
I. Lugianti, J. Y. Sari, and I. P. Ningrum, “Deteksi Kecepatan Kendaraan Bergerak Berbasis Video Menggunakan Metode Frame Difference,” in Seminar Nasional, 2012, vol. 1, pp. 324–332.
D. N. Alfarizi, R. A. Pangestu, D. Aditya, M. A. Setiawan, and P. Rosyani, “Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis,” AI dan SPK J. Artif. Intell. dan Sist. Penunjang Keputusan, vol. 1, no. 1, pp. 54–63, 2023.
A. N. Sugandi and B. Hartono, “Implementasi Pengolahan Citra pada Quadcopter untuk Deteksi Manusia Menggunakan Algoritma YOLO,” in Prosiding Industrial Research Workshop and National Seminar, 2022, vol. 13, no. 01, pp. 183–188.
S. S. Sindarto, D. E. Ratnawati, and I. Arwani, “Klasifikasi Citra Sistem Isyarat Bahasa Indonesia (SIBI) dengan Metode Convolutional Neural Network pada Perangkat Lunak berbasis Android,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 6, no. 5, pp. 2129–2138, 2022.
N. E. Budiyanta, M. Mulyadi, and H. Tanudjaja, “Sistem Deteksi Kemurnian Beras berbasis Computer Vision dengan Pendekatan Algoritma YOLO,” J. Inform. J. Pengemb. IT, vol. 6, no. 1, pp. 51–55, 2021.
C. Geraldy and C. Lubis, “Pendeteksian dan Pengenalan Jenis Mobil Menggunakan Algoritma You Only Look Once dan Convolutional Neural Network,” J. Ilmu Komput. dan Sist. Inf., vol. 8, no. 2, pp. 197–199, 2020.
P. Y. Putra, A. S. Arifianto, Z. E. Fitri, and T. D. Puspitasari, “Deteksi Kendaraan Truk pada Video Menggunakan Metode Tiny-YOLO v4,” J. Inform. Polinema, vol. 9, no. 2, pp. 215–222, 2023.
E. Bisong, Building machine learning and deep learning models on Google cloud platform. Springer, 2019.
F. A. Nugraha, N. H. Harani, and R. Habibi, Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Kreatif, 2020.
S. W. Dari and J. Triloka, “Kajian Algoritme Mask Region-Based Convolutional Neural Network (Mask R-CNN) dan You Look Only Once (YOLO) Untuk Deteksi Penyakit Kulit Akibat Infeksi Jamur,” in Prosiding Seminar Nasional Darmajaya, 2022, vol. 1, pp. 132–
Published
How to Cite
Issue
Section
Copyright (c) 2024 Media Informasi Teknologi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.